

Supplementary Material for the paper:

ttrriimmAAll:: aa ttooooll ffoorr aauuttoommaatteedd aalliiggnnmmeenntt

ttrriimmmmiinngg iinn llaarrggee--ssccaallee pphhyyllooggeenneettiiccss aannaallyysseess

Salvador Capella-Gutiérrez, Jose M. Silla-Martínez and Toni Gabaldón

2

IInnddeexx ooff ccoonntteennttss

1. General features of trimAl.

1.1 Input and output formats. 3

1.2 Algorithm parameters. 3

1.2.1 Gap Score. 3

1.2.2 Residue Similarity Score. 4

1.2.3 Identity Score. 5

1.2.4 Consistency Score. 5

1.2.5 Residue Overlap Score. 5

1.2.6 Sequence Overlap Score. 5

1.2.7 Window Size. 5

1.3 Trimming algorithms and heuristics. 6

1.3.1 Removal of manually selected columns (-selected). 6

1.3.2 Alignment trimming based on user-defined thresholds. 6

1.3.3 Alignment selection and trimming based on consistency thresholds. 7

1.3.4 Alignment trimming based on automatically-selected thresholds. 7

1.3.4.1 The -gappyout method. 7

1.3.4.2 The -strict method. 8

1.3.4.3 The -strictplus method. 10

1.3.5 Automatic trimming heuristic: automated1. 11

1.3.6 Automated removal of spurious sequences. 12

2. Benchmark analysis. 14

2.1 Construction of the benchmark dataset. 14

2.2 Phylogenetic analyses. 15

2.3 Results. 16

3. Literature cited. 18

4. Appendix. 19

3

11.. GGeenneerraall ffeeaattuurreess ooff ttrriimmAAll..

Here we provide a summarized but comprehensive documentation of the main features of

trimAl v1.2. More details, additional information, as well as specific examples to illustrate

the use of the software can be found at trimAl website: trimal.cgenomics.org

1.1 Input and output formats.

trimAl reads and renders protein or nucleotide alignments in several Multiple Sequence

Alignment (MSA) formats, including Phylip, Fasta, Clustal, NBRF/Pir, Mega and Nexus. The

program detects automatically the input format and generates the output file (a trimmed

alignment according to the options selected) in the same format. Alternatively, the user

can select a different format for the output. Moreover, trimAl can provide as an output

the complementary MSA, that is, the columns that would otherwise be removed by the

specified parameters (option -complementary). Finally, to facilitate the visualization of

trimAl's trimming, the program can generate an html file in which selected and trimmed

columns are colored differently (-htmlout).

Besides MSAs, trimAl can optionally produce outputs other type of MSAs, which have been

deemed of interest. For instance, to facilitate the tracking of the correspondences between

the columns in the original and the trimmed alignment, trimAl can return the relationship

between their column numbers (option -colnumbering). trimAl can provide information on

gap and/or conservation scores in a MSA. This information can be relative to each column,

options -sgc for gaps and -scc for conservation values, or it can show the distribution of

values along the alignment, options -sgt and -sct for gaps and conservation distribution,

respectively. When comparing several alignments, trimAl can also offer statistical

information about their consistency score (options -sfc for each column and -sft for the

whole alignment). Finally, trimAl can provide a comparison matrix summarizing the

percentage of identities between each pair of sequences in the alignment, their averages

and the highest identity pair for each sequence, option -sident.

1.2 Algorithm parameters

In order to apply the different trimming algorithms and heuristics (see next section),

trimAl can compute a number of different scores, which are defined below.

1.2.1 Gap Score (Sg).

The gap score for a column of size n is the fraction of positions in the column without a

gap.

Sg(k) = 1.0 - (number of sequences with a gap / n)

4

1.2.2 Residue Similarity Score.

The residue similarity score consists of Mean Distance (MD) scores as described in

Thompson et al, (2001). This value uses the score between any pair of residues a and b,

C(a,b), as defined by a given scoring matrix. By default, trimAl uses the BLOSUM62

matrix to work with amino acids sequences and the identity matrix with nucleotides

residues, but other matrices can also be supplied by the user.

The similarity score of a column is computed as follows. Given a scoring matrix (e.g.

BLOSUM62) with R residues, an R-dimensional continuous sequence space is defined. For

each residue i in the column k, a point Si in the space is defined as:

Being Aik the residue i-th of the column k and C(1, Aik) the substitution score in the

residue similarity matrix between the first residue in the alphabet and Aik. In other words,

Si is just a column of the scoring matrix selected by the residue in the sequence i-th of the

column k. Sir is defined as the r-th dimension of the point Si.

Then, for column k, the distance Dij for each pair of sequences i and j is simply their

euclidean distance in the r-dimensional space defined above:

In order to give more weight in the final score to distantly related sequence pairs a

weighted mean of the pairwise sequence distances Dij is calculated as follows:

Where Wij is defined as 100.0 - PCIDij, being PCID the percentage of sequence identity

between sequences i and j. After that, the similarity score of the column k is defined as:

5

In trimAl v1.2, if the column k has a gap score equal or lower than 0.2, the MDk score is

set to zero. This is a way to penalize the presence of many gaps in the column in order to

avoid that columns with few residues receive high scores. We noticed that the inclusion of

this penalty avoided clear pitfalls when the trimming of an alignment was performed using

only similarity information.

1.2.3 Identity Score.

The identity score for each possible pair of sequences in the alignment is the number of

identical residues aligned between these two sequences divided by the length of the

longer sequence.

1.2.4 Consistency Score.

The column consistency score can only be computed when more than one alignment for

the same set and in the same order of sequences is provided.

Each alignment, called reference alignment when selected, is compared with the rest of

the alignments. Then each pair of aligned residues in the reference alignment is compared

with the other alignments and 1.0 is added to the cumulative score every time the same

aligned residue pair is found in one of the other alignments. This cumulative score is then

divided by the total number of alignments considered and by the total number of pairs in

the reference alignment; so that the final score ranges from 0 (no aligned pair found in

the other alignments) to 1 (all alignments have the same pairs and are thus fully

consistent).

1.2.5 Residue Overlap Score.

To calculate this score trimAl considers only three types of elements, namely "gap",

"residue" or "indetermination". The overlap score of a column in a given sequence is

calculated as the number of times that the program finds the same element at the same

position in the other sequences of the alignment, divided by the size of this subset.

1.2.6 Sequence Overlap Score.

After defining a residue overlap (see above) threshold, set by the user, we define the

sequence overlap score as the percentage of residues in that sequence that pass that

threshold.

1.2.7 Window Size.

This value establishes the number of columns at each side of a given position that trimAl

has to consider when computing some scores, such as gap, conservation or consistency

scores, for that position. When a window size is given, trimAl provides the average value

of all columns considered.

6

1.3 Trimming algorithms and heuristics

1.3.1 Removal of manually selected columns (-select).

This algorithm simply removes a set of columns as indicated by the user. The set of

columns that will be removed has to be provided as individual column numbers separated

by commas, and/or blocks of consecutive columns indicated as the first and last column

number separated by hyphen. In the following example:

-select {n,l,m-k}

where n and l are interpreted as single column numbers while m-k is a range of columns

(from column m to column k, both included) to be deleted. Note that the numbering of the

columns starts by 0.

For instance, the command:

-select {2,7,20-25,80-100}

will remove columns 2 and 7 and two blocks of columns ranging from column 20 to 25

and 80 to 100, respectively.

1.3.2 Alignment trimming based on user-defined thresholds.

The user can choose to remove all columns that do not pass a given threshold or a

combination of thresholds. The gap threshold (-gt) and similarity threshold (-st)

correspond to minimal values of the respective scores explained above and can be used

alone or in combination. As the scores they refer to, both thresholds range from 0 to 1.

trimAl provides two shortcuts to widely used thresholds: -nogaps (equivalent to -gt 1),

that deletes all columns with at least one gap in it, and -noallgaps, which removes those

columns composed only by gaps.

Additionally, the user can set up a conservation threshold (-cons) which refers to the

minimum percentage of columns from the input alignment that should be part of the

trimmed alignment. This threshold is defined between 0 and 100. This threshold overrides

all other thresholds. That is, if any other threshold would render a trimmed alignment with

fewer columns than those stated by the conservation threshold, then more columns are

added to the trimmed alignment until the conservation threshold is fulfilled. These

columns are added in the order dictated by their scores, always adding first the columns

with the highest scores. In the case trimAl has to decide upon columns with equal scores,

then columns adjacent to already selected column-blocks and closer to the center of the

alignment are added first, prioritizing the extension of longer and central blocks.

7

1.3.3 Alignment selection and trimming based on consistency thresholds.

When a set of Multiple Sequence Alignments is provided. trimAl computes a consistency

score for each alignment in the set and, subsequently, the alignment with the highest

score is then chosen.

The selected alignment might be trimmed in different ways. One of them is by removing

the columns that are less consistent across the other alignments. In order to do that, the

user can use the (-ct) parameter to set up the minimal values of the consistency score

(range of values between 0 and 1). All columns that do not reach this value will be

removed. The conservation score can also be used here as explained above or,

alternatively, in combination with gap or/and similarity methods.

1.3.4 Alignment trimming based on automatically-selected thresholds.

trimAl has different automatic methods to select different thresholds depending on MSA

features; The gappyout, strict and strictplus methods, which are described below.

1.3.4.1 The -gappyout method.

This method is based on the MSA's gap distribution. In a first step, this method computes

the gap scores of all columns and sorts them according to this score, producing a plot of

possible gap score thresholds versus the percentage of the alignment below that threshold

(see figure S1). Subsequently, for each set of three consecutive points in this plot trimAl

computes the slopes between the first and third point (blue lines). After comparing all

slopes, trimAl selects the point of maximal variation between consecutive slopes (vertical

red line in the figure S1).

Figure S1. Example of an internal trimAl plot showing possible gap score thresholds (y

axis) versus percentages of alignment length below that threshold (x axis). Thin blue lines

8

indicate slopes computed by the program. The vertical blue line indicates the cut-off point

selected by the gappyout algorithm.

After the selection of a gap score cut-off point, trimAl removes all of those columns that

do not reach this value. In practice, this method basically detects the bimodal distribution

of gap scores (gap rich and gap poor columns) in an alignment to subsequently get rid of

the gap-rich mode. In our benchmarks, we have observed that this method efficiently

removes most of the most poorly aligned regions.

Figure S2. An example of an alignment trimmed with the gappyout method. Conserved

(grey) and trimmed (white) columns are indicated. This figure has been generated with

trimAl -htmlout option.

1.3.4.2 The -strict method.

This method combines a gappyout trimming with a subsequent trimming based on an

automatically selected similarity threshold. In order to select the similarity threshold,

trimAl uses the residue similarity scores distribution from the MSA. This distribution is

transformed to a logarithmic scale (see figure S3), and then the residue similarity cut-off

is selected as explained below.

9

Figure S3. trimAl's internal plot representing similarity score values versus the

percentage of the alignment below that value. Vertical blue lines indicate the significant

values at 20 and 80 percentiles. The cut-off point is indicated with a red vertical line.

From this similarity distribution, trimAl selects the values at the points at percentiles 20

and 80 of the alignment length (vertical blue lines in figure S3), and computes the residue

similarity threshold (vertical red line in the figure S3) as follows:

This is equivalent to setting upper and lower boundaries for the threshold at percentiles

20 and 80, respectively, of the similarity score distribution in that alignment, and then

set the similarity threshold so that it is ten times closer to the lower boundary (similarity

at P80) than to the upper limit (similarity at P20). This method of setting the similarity

threshold has worked best in our benchmarks. The lower and upper boundaries assure

that the 20% most conserved columns in the alignment will be conserved, whereas the

20% most dissimilar columns will be discarded. The specific similarity threshold will lie

between these boundaries depending on the specific distribution of similarity scores of the

alignments: alignments with step similarity score curves and large differences between

most similar and most dissimilar columns will set more columns below the threshold,

whereas those with more columns with scores similar to the most-conserved fraction will

10

apply more relaxed cut-offs. However, the specific removal of a column will depend on its

context (see below).

Once trimAl has calculated the residue similarity cut-off, trimAl proceeds as follows: 1)

The gappyout method (see above) is applied to mark those columns that would be deleted

with that method. 2) The residues that are below the similarity cut-off are also marked. 3)

After applying these filters, trimAl recovers (unmarks) columns that have not passed the

gap and/or similarity thresholds, but where three of the four most immediate neighboring

columns (two at each side) have passed them. 4) Finally, in a last step, trimAl removes all

columns that do not fall within a block of at least five consecutive columns unmarked for

deletion.

Figure S4. An example of an alignment trimmed with the strict method. We have used

the same alignment as in figure S2. Conserved (grey) and trimmed (white) columns are

indicated.

1.3.4.3 The -strictplus method (Optimized for Neighbor Joining phylogenetic tree

reconstruction).

This method is similar to the -strict method, but they differ in that -strictplus

automatically selects the block size for the final step of the algorithm. This block size is

11

defined as 1% of the alignment size with a minimum value of 3 and a maximum size of

12.

Figure S5. An example of an alignment trimmed with strictplus method. In this case, the

block size has automatically been set to 12 because the alignment length is greater than

1200 residues. Again, the same alignment as the previous figures S2 and S4 has been

used.

1.3.5 Automated trimming heuristic: automated1. (Optimized for

Maximum Likelihood phylogenetic tree reconstruction).

Based on our own benchmarks with simulated alignments (see below and on-line

documentation), we have designed a heuristic approach -automated1- in order to select

the best automatic method to trim a given alignment. This heuristic is optimized for

trimming alignments that will be analyzed by Maximum Likelihood phylogenetic analyses,

future releases of trimAl may incorporate new heuristics that are optimized for other

applications. Using a decision tree (see figure below) this heuristic chooses between

gappyout and strict methods (see above). For this, trimAl considers the average identity

score among all the sequences in the alignment, the average identity score for each most

similar pair of sequences in the alignment, as well as the number of sequences in the

alignment. We have observed that all these variables were important in deciding which

12

method would provide the highest improvement on a given alignment.

Figure S6. A decision tree for the heuristic method automated1. trimAl uses strict (light

blue) or gappyout (light grey) methods depending on 1) the average identity score (Avg.

identity score) among the sequences in the alignment, 2) the number of sequences in the

alignment and 3) the average identity score (max Identity Score) computed from the

maximum identity score for each sequence in the alignment. We use light yellow color to

highlight the decisions in the tree.

1.3.6 Automated removal of spurious sequences.

trimAl can also remove poorly aligned or incomplete sequences considering the rest of

sequences in the MSA. For that purpose, the user has to define two thresholds:

First, the residue overlap threshold (-resoverlap) corresponds to the minimum residue

overlap score for each residue.

Second, the sequence overlap threshold (-seqoverlap) sets up the minimum percentage of

the residues for each sequence that should pass the residue overlap threshold in order to

maintain the sequence in the new alignment. Sequences that do not pass the sequence

overlap threshold will be removed from the alignment. Finally, all columns that only have

gaps in the new alignment will also be removed from the final alignment.

13

Figure S7. An example of an alignment trimmed with the option to remove spurious

sequences. In this case, we have used these parameter: 1) -resoverlap 0.75 and 2) -

seqoverlap 75. Conserved (grey) and trimmed (white) sequences are indicated. Again, the

same alignment as the previous figures S2, S4 and S5 has been used.

14

22.. BBeenncchhmmaarrkk aannaallyyssiiss

2.1 Construction of the benchmark dataset

In order to test the general applicability of trimAl, as well as to find an empirical base to

set the heuristics for the automatic selection of parameters we performed a benchmark

analysis.

For this purpose we used three different sets to execute our benchmark. One of these sets

has been used previously [Talavera G, Castresana J., 2007] to test the improvement in

phylogenetic performance after an alignment trimming phase. This set comprises

evolutionary simulations of protein sequences of various lengths (400 to 3200 positions),

performed with ROSE [Stoye J et al, 1998] along phylogenetic trees with 16 tips. These

trees have three different topologies varying in their level of symmetry, and whose branch

lengths were multiplied by 0.5, 1 and 2, respectively, totaling six different phylogenetic

trees.

The other two sets of alignments were generated by us to expand the dataset to the case

of 32 and 64 tree tips, which we consider to be more realistic in phylogenomic analyses.

In order to generate these additional sets of alignments, we first took the reference trees

from the previous study, one tree for topology. Using ETE [ete.cgenomics.org] we

generated twelve new reference trees with the same level of asymmetry as those in the

Talavera et. al. study, six of them with 32 tips and the other six with 64 tips. We

multiplied the lengths of their branches to obtain the same three levels of divergence (0.5,

1 and 2.0) as the previous study.

This set of reference trees were used to generate the corresponding sets of alignments as

indicated in Talavera et al (2007). For this we used the program ROSE v1.3 [Stoye J et

al, 1998] using the same seed protein and parameters described in [Talavera G,

Castresana J., 2007] to generate their benchmark sets. The simulations included

insertions and deletions with a probability of 0.03. The other parameters for the

simulation were the ones described in [Talavera G, Castresana J., 2007]. We also used

the same strategy to infer the patterns of rate heterogeneity of the seed proteins. Finally,

the sets generated by ROSE contain, similarly to the set of 16 sequences, simulated

protein sequences of various lengths (400 to 3200 positions) and different topologies.

15

Table 1. A summary of the total number of alignments used in our benchmark sorted in

different groups depending on the number of sequences, kind of topology, tree divergence

and average length of the sequences before being aligned. The last row represents the

total number of alignment for each sequences length.

2.2 Phylogenetic analyses.

To measure the improvement in phylogenetic reconstruction after running trimAl in the

alignments we applied a standard phylogenetic analysis pipeline to each simulated

sequence set. This included multiple sequence alignment with MUSCLE v3.7 [Edgar R.C.,

2004] and Neighbor Joining or Maximum Likelihood phylogenetic reconstruction using

PhyML v2.4 [Guindon S. and Gascuel O., 2003]. For the reconstruction of phylogenetic

trees we used the following parameters: 1) datatype: 1, 2) format: i, 3) number of data

sets: 1, 4) number of bootstrap data sets to generate: 0, 5) substitution model name:

JTT, 6) proportion of invariable sites: e, 7) number of relative substitution rate categories:

4, 8) gamma distribution parameter: e, 9) starting tree: BIONJ 10) optimize tree

topology: y (ML) or n (NJ) and 11) optimize branch lengths and rate parameters: y (ML)

or n (NJ).

Before the phylogenetic analyses, multiple sequence alignments were trimmed using the

Gblocks v0.91b [Castresana J., 2000] with default parameters and trimAl's gappyout,

strict, strictplus automated methods and trimAl’s automated1 heuristic method. For the

summary, we chose the trimAl’s strictplus method for neighbor joining tree reconstruction

and trimAl's automated1 method for maximum likelihood tree reconstruction method, as

they were the optimal choices for these conditions.

The accuracy of the resulting trees was measured by comparing them with the original

trees used to generate the sequence sets, and measuring the Robinson Foulds distance

using Ktreedist v1.0 program [Soria-Carrasco V. et al, 2007]. The trees produced by the

complete, untrimmed, alignment were also compared with the original trees.

16

In total 180 different conditions were tested, corresponding to different scenarios of tree

topology, reconstruction method, alignment length, number of sequences and sequence

divergence. Each condition included from 100 to 300 alignments and was tested with

Gblocks default parameters and the strictplus (NJ) and automated1 (ML) methods in

trimAl. Additional benchmark analyses, based on simulated sequences and on real

datasets, done in previous versions of trimAl guided us in choosing the different options

for the parameters. For the sake of simplicity we show here a summary of the last

benchmark analyses performed with trimAl v1.2. Results from other benchmarks can be

seen through the trimAl website.

2.3 Results

A summary of the results from this benchmark analyses is represented in the appendix

section. In all scenarios considered, the use of trimAl either improves the phylogenetic

signal or maintains a similar signal to noise ratio relative to the original alignment. In

contrast, the use of GBlocks may significantly reduce the phylogenetic signal to noise ratio

in the trimmed alignments. This is especially true for the case of Maximimum Likelihood

(ML), where untrimmed alignments produce reasonable results but the use of Gblocks

may significantly reduce the phylogenetic signal.

In most scenarios (90%) the use of trimAl produces better results than GBlocks. In a

reduced number of cases (10%), however, Gblocks outperforms trimAl, namely, when

divergence is high (≥ 2.0), NJ is used for phylogenetic reconstruction, the number of

sequences is high (≥ 32) and the alignment length is high (≥ 800 positions). For proteins

of average size, e.g. roughly 400 residues in the human genome, trimAl performed better

in all cases.

The greatest improvements of phylogenetic signal by trimming are achieved when using

Neighbor Joining (NJ) and highly divergent trees. When using ML for tree reconstruction,

the improvement by trimming is only significant with a combination of moderate to high

divergence (≥ 1.0) and large number of sequences. Altogether these results indicate that

trimming with trimAl strict method would be advisable when NJ is going to be used in the

phylogenetic reconstruction, whereas trimAl automated1 method would be more indicated

when ML is chosen as the tree reconstruction method.

We also compared the resulting using the Ktree score, a measure that takes into account

differences in branch lengths [Soria-Carrasco et. al 2007]. The results show, as expected,

larger differences in branch lengths when using NJ method for tree reconstruction. With

few exceptions, alignments trimmed with trimAl present more similarities to the reference

tree as compared to the tree reconstructed with the original alignment. The use of Gblocks

can produce better results than trimAl in terms of Ktree scores when NJ is used on

asymmetric trees. In the rest of the conditions trimAl produce better results or is

17

comparable to Gblocks. Of important note is that the use of Gblocks on symmetric trees or

with ML reconstruction will often result in significantly worse Ktree scores as compared to

the untrimmed alignment.

18

33.. LLiitteerraattuurree cciitteedd

Castresana, J. (2000), Selection of conserved blocks from multiple alignments for their

use in phylogenetic analysis, Mol Biol Evol, 17 (4), 540-52.

Edgar R.C. (2004), MUSCLE: a multiple sequence alignment method with reduced time

and space complexity, BMC Bioinformatics, 5:113.

Guindon S., Gascuel O. (2003), A simple, fast, and accurate algorithm to estimate large

phylogenies by maximum likelihood, Syst Biol, 52 (5), 696-704.

Huerta-Cepas, J., et al. (2007), The human phylome, Genome Biol, 8 (6), R109.

Soria-Carrasco V. et al, (2007), The K tree score: quantification of differences in the

relative branch length and topology of phylogenetic trees, Bioinformatics, 23 (21), 2954-

2956

Stoye, J., Evers, D., Meyer, F. (1998), Rose: generating sequence families, Bioinformatics,

14 (2), 157-63.

Talavera, G., Castresana, J. (2007), Improvement of phylogenies after removing

divergent and ambiguously aligned blocks from protein sequence alignments, Syst Biol, 56

(4), 564-77.

19

44.. AAppppeennddiixx

The first set of 4 figures (figures S8 to S11) describes the comparisons in terms of

topology. Each figure corresponds to a possible combination between the phylogenetic

tree reconstruction method (Neighbor Joining or Maximum Likelihood) and the tree

topology (Asymmetric or Symmetric). Panels within a figure represent the nine different

combinations of the number of sequences in an alignment (16, 32 and 64) and the

evolutionary divergence of the seed tree used to generate those alignments (0.5, 1 or 2).

In each panel, x-axis represents the average length of the sequences in the multiple

sequence alignment, whereas the y-axis represents the Robinson Foulds distance. This

distance measures the topological difference between two given tree, therefore, lower

values indicate a better performance of the alignment when reconstructing the tree.

Finally, there are three lines that represents the performance of each method: untrimmed

alignments (green), Gblocks trimming (blue) and trimAl trimming (brown).

The second set of 4 figures (figures S12 to S15) describes the results in terms of Ktree

score, which takes into account differences in branch lengths. Figures are organized as in

the first set. However, y-axis corresponds in this case to Ktree scores.

N
u

m
b

e
r

o
f

Se
q

u
e

n
ce

s:
 1

6
N

u
m

b
e

r
o

f
Se

q
u

e
n

ce
s:

 3
2

N
u

m
b

e
r

o
f

Se
q

u
e

n
ce

s:
 6

4

Divergence: 0.5 Divergence: 1.0 Divergence: 2.0
Neighbour Joining Method -Asymmetric Trees

F
ig

u
r
e
 8

Neighbour Joining Method -Symmetric Trees
N

u
m

b
e

r
o

f
Se

q
u

e
n

ce
s:

 1
6

N
u

m
b

e
r

o
f

Se
q

u
e

n
ce

s:
 3

2
N

u
m

b
e

r
o

f
Se

q
u

e
n

ce
s:

 6
4

Divergence: 0.5 Divergence: 1.0 Divergence: 2.0

F
ig

u
r
e
 9

Maximum Likelihood Method -Asymmetric Trees
N

u
m

b
e

r
o

f
Se

q
u

e
n

ce
s:

 1
6

N
u

m
b

e
r

o
f

Se
q

u
e

n
ce

s:
 3

2
N

u
m

b
e

r
o

f
Se

q
u

e
n

ce
s:

 6
4

Divergence: 0.5 Divergence: 1.0 Divergence: 2.0

F
ig

u
r
e
 1

0

Maximum Likelihood Method -Symmetric Trees
N

u
m

b
e

r
o

f
Se

q
u

e
n

ce
s:

 1
6

N
u

m
b

e
r

o
f

Se
q

u
e

n
ce

s:
 3

2
N

u
m

b
e

r
o

f
Se

q
u

e
n

ce
s:

 6
4

Divergence: 0.5 Divergence: 1.0 Divergence: 2.0

F
ig

u
r
e
 1

1

N
u

m
b

e
r

o
f

Se
q

u
e

n
ce

s:
 1

6
N

u
m

b
e

r
o

f
Se

q
u

e
n

ce
s:

 3
2

N
u

m
b

e
r

o
f

Se
q

u
e

n
ce

s:
 6

4

Divergence: 0.5 Divergence: 1.0 Divergence: 2.0
Neighbour Joining Method -Asymmetric Trees

F
ig

u
r
e
 1

2

Neighbour Joining Method -Symmetric Trees
N

u
m

b
e

r
o

f
Se

q
u

e
n

ce
s:

 1
6

N
u

m
b

e
r

o
f

Se
q

u
e

n
ce

s:
 3

2
N

u
m

b
e

r
o

f
Se

q
u

e
n

ce
s:

 6
4

Divergence: 0.5 Divergence: 1.0 Divergence: 2.0

F
ig

u
r
e
 1

3

Maximum Likelihood Method -Asymmetric Trees
N

u
m

b
e

r
o

f
Se

q
u

e
n

ce
s:

 1
6

N
u

m
b

e
r

o
f

Se
q

u
e

n
ce

s:
 3

2
N

u
m

b
e

r
o

f
Se

q
u

e
n

ce
s:

 6
4

Divergence: 0.5 Divergence: 1.0 Divergence: 2.0

F
ig

u
r
e
 1

4

Maximum Likelihood Method -Symmetric Trees
N

u
m

b
e

r
o

f
Se

q
u

e
n

ce
s:

 1
6

N
u

m
b

e
r

o
f

Se
q

u
e

n
ce

s:
 3

2
N

u
m

b
e

r
o

f
Se

q
u

e
n

ce
s:

 6
4

Divergence: 0.5 Divergence: 1.0 Divergence: 2.0

F
ig

u
r
e
 1

5

